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J. Phys. A :  Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

When is the ‘sum over classical paths’ exact ? 

J. S. DOWKER 
Department of Theoretical Physics, The University of Manchester, Manchester 
13, England 
M S .  received 20th Apri l  1970 

Abstract. The calculations of Schulman on the path integral formulation of 
the spherical top are generalized to the case of a free particle moving on the 
manifold of a simple Lie group. I t  is shown that the finite time propagator takes 
on the same form as the short time one except for the phase factor exp ( - iRt) 
where R is the constant scalar curvature of the group manifold. 

1. Introduction 
The path integral formalism, despite some mathematical imprecision as to its 

meaning, allows us to formulate quantum mechanics, and other things, in a direct 
and satisfying way (Feynman and Hibbs 1965). 

The  quantity that the theory deals with is the probability amplitude, or prop- 
agator, (q”, tl’lq’, t‘ ), the square of which gives the probability of finding our system in 
the state labelled by the numbers (coordinates) q”{, i = l . . . r  at time t”if the system was 
definitely in the state q I i  at time t’ < t“. One way of deriving, and thereby defining, 
the path integral expression for the propagator is the method used by Feynman (1948) 
based on work of Dirac. The  propagator is split into infinitely many pieces by means 
of the composition law (semi-group property) 

(q”‘, t”‘Iq’, t‘ ) = J (qrr’, t”‘1q”, t “ )  dq” ( f ,  t ” [ q ’ ,  t ’ )  (1) 

(which is simply a statement of the completeness of the states Iq”, t”}), and the 
functional integration ‘over all paths’ is interpreted as an integration over a con- 
tinuous product of differentials. All we need now is an expression for the ‘short time’ 
propagator (q”, t+  Atlq’, t ) ,  

Essentially by postulate we take the following expression 

(q”, t’+Atiq’, t ’ )  = Xexp(iS(q”, t‘+Atlq‘, t’))  (2) 
where AV is some normalization and S is the classical ‘action’ defined by 

C“ 

S(q”, t”(q’, t ’ )  = 1 L(q, q,  ..., t )  d t  q“ = q(t”) 
t’ 

q’ = dt‘) 
in terms of the classical Lagrangian L. In  equation ( 2 ) ,  S is calculated for the 
classical path connecting q’ and 4”. The  finite time propagator is now calculated, at 
least in principle, by substituting (2) into the functional integral, which now takes on 
the aspect of an integral over all paths connecting the two end points, each path being 
composed, so to speak, of a set of infinitesimal classical paths. The  remarkable thing 
is that in those cases where the propagator has been calculated in closed form the 
expression for the $finite time propagator coincides, more or less, with that for the 
short time one, (2) .  This fact has been noted by Schulman (1968) and DeWitt (1969). 

I4 45 1 
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It means that the integral over all paths reduces to a sum over classical paths.? 
That this is always the case has been claimed by Clutton-Brock (1965), but this is 
incorrect.: In  this paper we should like to give a class of systems for which the result 
is true. 

2. Calculation. Basic ideas and an explicit example 

and, amongst these, those with Lagrangians given by 

The  quantization of such a system has been discussed by DeWitt (1957) and we shall 
use the notation and results of this paper. The system is just that of a ‘particle’ 
restricted to move in an r-dimensional Riemannian space YT of metric g,?. 

T o  proceed with the quantization we need an expression for the short time 
propagator. T o  this end the following structure is introduced (DeWitt 1957-5 7 ) :  

(q” ,  t’’Iq’, t’ ), EZ (2ni”‘!2g’’-”~D1/2(~”, t’lq’, t’)g’-Ii4 exp(iS(q”, t”lq’, t’)) 

We shall choose systems whose Lagrangians are at most quadratic in velocities 

L = *gi j  (q) g $. 

(3) 
where g‘ = detlgi3(q’)j etc. and D is the van Vleck determinant 

By explicit calculation (q”, t“lq‘, t ‘ )c  is shown to nearly satisfy a Schrodinger equation, 
i.e. we have, for t” > t’, 

a 
i - (q”, tnlq’t’)C-H411 (qf’, t’’lq’, t ’ ) ,  

at I’ 

where R(q) is the Riemannian scalar curvature of V,. and where the operator H q f r  is 
defined by 

when acting on a wave function. This is just the Laplace-Beltrami operator A, in 
the Riemannian space VT. Because of the R‘ term on the right-hand side of (5) we 
have that 

(4”) t”/q’, t ’ ) c  = (q”, t ” lq ’ ,  t ’ ) +  + o ( t ” - t ’ ) 2  

where (q”, t”lq’, t’)+ is the propagator for the Hamiltonian H+i+-R rather than that 
(q”, t”Iq’, t’)  for the Hamiltonian H.  T o  obtain the short time propagator for H in 

f If, as is usually the case, there is more than one classical path connecting q’ and 4’’ then 
we obtain the short time propagator with correct boundary conditions by adding all the cor- 
responding expressions (2) ,  cf. Schulman (1968-p. 1556). This is the sum over classical paths 
referred to. This problem we do not treat here as it concerns properties of the space V ,  in the 
large. 

See the work of Groenewold (1956). 
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the form of (3) we should have started from the Lagrangian L++gR. In  the case that 
R is constant the effect is simply that of a constant shift in energy, i.e. a phase factor 
on the short time propagator, with no physical effect, 

DeWitt (1957) goes on to implement the Feynman path summation using ( 1  ), 
as the short time form for ( 1  ) + with a rather surprising conclusion which does not 
concern us here as we are going to ask the following question. Under what circum- 
stances is expression (3)t the jn i te  time, or exact, propagator, up to a phase factor? 
If this happens then we shall say that the sum over classical paths is exact. 

T o  answer this question we need only consider Schrodinger's equation and so we 
return to a consideration of (5). The condition we are seeking is that the following 
equation should hold : 

i.e. that the quantity g"-1'dD1'2g'-114 should be an eigenfunction of the Laplace- 
Beltrami operator. It is easily shown that the van Vleck determinant is given by 

where R is half the square of the geodesic distance between q" and q', and we see that 

g"1/2D-1g11/z = -(t"-t')Tp 

where p is Ruse's invariant (e.g. Schouten 1954-p. 383). Condition (6) now becomes 

cp-1'2. (7)  AZ/fp -1/2 = 

Rather than try to attack this equation directly we shall take a hint from the 
calculations of Schulman (1968). The  system there discussed is the spherical top, 
for which the space V r  is three-dimensional and of constant curvature-the three- 
dimensional sphere S3. For the n-dimensional sphere s", Walker (1946) has calculated 
p. Specifically, in the case of S3 ,  we have 

p1'2 = (sinas/as), R = i s z  and a2 = QR (8) 
and it can be checked that p-1/2 satisfies (7) with c equal to a2. Substituting these 
results into Schrodinger's equation (5) we reproduce Schulman's conclusions directly, 
without having to solve ( 5 ) .  However this is not our main object. 

The  spheres S" are harmonic spaces (e.g. Schouten 1954-p. 381) for which p is 
a function of s only. Equation (7)  leads uniquely to the form (8) for harmonic spaces. 

The  explicit verification that p-1'2 for S3 is an eigenfunction of the Laplace- 
Beltrami operator is not very satisfactory and to proceed further we note that S3 is 
the group manifold of SU(2) and that the zonal spherical functions on this manifold 
are just the characters of the irreducible representations of SU(2) divided by the 
dimension of the representation, namely 

sin( he) 
h sin 0 

@,(e) = -__ (9) 

t A referee has suggested the happier term 'quasi-classical one-path amplitude' for expres- 
sion (3). With the qualifications implied in the previous footnote (t) we shall continue to call 
it the short-time propagator. 
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where h is a positive integer (= 2j+ 1 in terms of the ‘spin’ value j )  labelling the 
representation and 19 is a rotation angle proportional to the geodesic distance s. For 
the elementary analysis we have in mind in the present paper vie do not need the 
advanced theory of spherical functions on homogeneous spaces (e.g. Helgason 1962, 
Berezin et al. 1956, Berezin and Gelfand 1956, Berezin 1957, Cartan 1929, Gelfand 
1950). It is sufficient to know that the characters, considered as functions on the 
group manifold, are eigenfunctions of the Casimir operators, considered as differential 
operators on the manifold. The  proof of this elementaryfact can be found, for example, 
in Racah (1951-p. 33). 

For SU(2) there is only one independent Casimir operator and that is just the 
Laplace-Beltrami operator A,. Thus vie have 

a,--- (sin(h0)I = A - - .  (sin(h0)I 
h sin 0 h sin 0 

By taking the limit h - + O  and comparing with (8) we see that p-l’, is indeed an 
eigenfunction of A, for S3. Not only that, for we can see possible generalizations of 
this result. We shall suggest that V ,  is the group manifold of a compact semi-simple 
Lie group and we then have to show that p-l’, is related to the zonal functions 

xtn, - character of ‘ (h )  representation’ 
d(iL) dimension of ‘ (h)  representation’ (10) ___ CD,,, = -- = - 

by some limiting procedure analogous to h --f 0 for the SU(2) case. In  connection 
with this latter case we note that for h = 0 the dimension of the representation 
appears to be zero. We have not investigated the exact meaning of the value h = 0 
( j  = - h!) but it seems to us to correspond to the ‘zero’ representation in which every 
group element is mapped onto the zero matrix, of any dimension. The character of the 
unit element, which normally gives the dimension of the representation, here gives 
zero. 

Weyl (1926, 1939) has computed the characters of the irreducible representations 
of all semi-simple groups. The particular case of SU(n) can be found in Weyl (1931) 
and, because of its simplicity and usefulness, we shall consider this particular case 
explicitly. 

The configuration space V ,  of our dynamical system is now taken to be the group 
manifold M of SU(n). This is n2 - 1 dimensional, thus Y = n2 - 1. The  coordinates 
4% are now the coordinates of group space, i.e. they are the parameters of the elements 
of the (abstract) SU(n) group. The metricgij is the metric with which the group space 
of SU(n) can be endowed (Cartan 1927, Schouten 1929, Eisenhart 1933). Explicitly? 
in terms of canonical coordinates q1 

with 
181; = qcCcba 

mheref qa = 6;qi and the c;bC are the structure constants of the Lie algebra of 
SU(n). From the form for p we see that we shall need the quantity g = detlg,,]. 

t Many of these constructions are valid for any semi-simple group. 
$ The indices a, b, c etc. are introduced for technical reasons. 
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This quantity occurs, fundamentally, in the expression for the invariant volume in 
144 

r 

dq = \/gI-Idqi. 
1 

In  canonical coordinates we have from (ll), by diagonalizing Q, 

sinh 4% 
%/g = rI-- 4. 

where the product extends over all the eigenvalues U of the matrix Q. The  Cartan- 
Killing classification of Lie groups depends on the distribution of these eigenvalues 
(‘roots’). For SU(n) at least n-  1 ( = I ,  the rank of the group) vanish and the rest 
are imaginary and are equal and opposite in pairs. Thus for these non-zero roots 
we can put, in terms of the ‘angles of rotation’ ut, 

E = i(ut-ws), t , s  = 1, 2, ..,, n 

with the normalization and ordering 
n 
T Wt = 0;  Wt > us,  t < s. 
1 

Thus 
n 2 s i n & ( w t - w , )  

q w 1 ,  %...%) 
- [ t < S  dg = 

with D(w l...w,) the difference function 

D ( w  l...o,) = D ( w )  = n ( w t - w s ) ,  
t < s  

We may now use the fact that M is a group space to simplify our basic problem of 
investigating (7). We can do this by noting that in group space any point is as ‘good’ 
as any other point. The  group acts transitively on M and any point can, for example, 
be transformed into the origin 0. Let us do this for the starting point q‘ and choose 
0 as the origin of our canonical coordinate system? where g t j  takes on the form a i j .  
Thus we have 

because q i  equals se’ with eiei = 1. (The unit vectors e‘ select a geodesic through 0 
and s is the distance along this curve to the point q”.) 

We now have p - l l 2  N g“-ll4 where: 

We shall adhere to this special system throughout this paper. 
5 This is just the expression of Walker (1946) for Ruse’s invariant in a symmetric space, 

in the case this last is the manifold of SU(n). 
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and equation (7) becomes 
A 2 1 1 g H - 1 / 4  = c g l f - l [ 4 ,  

At this point we shall simply write down the zonal functions (10) for SU(n) 
using Weyl’s (1939) notation. We have 

f ( l 1 ,  I,, ... I ,  ) D ( n - l , ? ~ - 2 ,  ... O)\ - 
@(U = [ f ( n - l , z - Z ~ ~ ~  D(ll, 12,  ... I,) I ’  

The first factor gives the character and the second the dimension. The  integers 
I ,  > l2 > ... > I ,  = 0 label the representations of SU(n), in a way which does not 
concern us here, and the function f is defined by 

f ( Z 1 ,  ... I,) = det[exp(iZ,w,)I. 

Another way of writing &a-- 1, ..., 0) is 

f(n-1, ..., 0) = D{exp(iw,), ..., exp(iw,)} = n 2 s i n & ( w t - w , )  (15) 

If we compare (12), (13), (14) and (15) we see that all we have to do is to find a set 

t < s  
using = 0. 

of values for the 1, such that [(I1, ... 1,) is given by 

((11, ...L ) - D(w) D(4 .  
For, in this case, we would have @ ( l )  N g-1‘4 and our desired result follows 
immediately because 

&@,,,) = 4 l ) @ ( l ) *  (16) 

The desired values are I ,  = 1, = ... = I ,  = 0. T o  see this we employ the device 
of Weyl(l926 or 1939) for investigating the limit w ,  -+ 0 but here applied to vanishing 
I,. We put I ,  equal to ( a - t ) h  and let h tend to zero. We find 

and 

whence 
n(s-t) -l 

f ( n -  1, ..., 0) (.- l)! 
D(w) I<, j j n ( n - l ) r 2  

%I, = 

as required. What we have shown now is that the quantity (q”, t”[q’,  t‘>c satisfies a 
Schrodinger equation 

a 
d t  

i T  (q” ,  t ” / q ’ ,  t ’ ) c - H q , j ( q ’ ’ ,  t”lq‘,  t ‘ )c  = &h(,,,(q”, f l q ’ ,  t ’ ) c .  

The eigenvalue A,,, is related to the constant scalar curvature R of group space which, 
for a particular choice of normalization, has the value 

R = &(nZ- 1) = t r .  

The value of A ( [ )  is the eigenvalue of the Casimir operator in the ( I l ,  ..., I,) representa- 
tion and, for I, equal to zero, reduces to a quarter of the square of the length of the 
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sum of the positive root vectors (see e.g. Racah 1951). For SU(n) we have 

1 
8.6 

+A,,,, = - (n  + l)(n - 1) 

and so 
1 

= -R. 
12 

This same result can also be shown to be true for the other groups? in Cartan’s list, 
namely B,, C,, D, and the exceptional groups. Using the notation of Racah (195 1) the 
representation for which the zonal function reduces to g-ll4 is that given by setting 
the vector K equal to zero. I n  this case the eigenvalue of Casimir’s operator is lRI2 
where the vector R (not to be confused with R the scalar curvature) is half the sum 
of the positive roots. A useful discussion of these quantities, with a consistent 
normalization, can be found in Gourdin (1967). The apparent inconsistency of the 
sign of the eigenvalue of Casimir’s operator with that given by Racah is due to a 
fugitive factor of i2. 

3. Alternative treatment and further developments 
Instead of going via the character to our result we can, if we wish, reverse the 

above procedure. We sketch this approach here. 
Firstly we note that g-lI4(q) is a class function$ and so depends on only the 

‘complex distance’ of q from the origin or, if we like, on the angles U,. In  this case 
the Laplace-Beltrami operator A2 acting ~ n g - ~ ’ ~  reduces to the so-called ‘radial part’ 
A2 of the operator (e.g. Berezin 1957) and can be expressed in terms of derivatives 
with respect to the U,. We can proceed in the general case, and not just for the 
algebra A,, and write 

u . O  

I? 2 s i n h + ( u .  w) P4 = 

where the product is over all positiue root vectors U and the scalar product U . 0 is 
taken with respect to the metric in the Cartan subspace (rootspace). We can take this 
metric to be the unit one. The  quantity J 2  defined by 

-t 

J = lJ2sinh+(u. 0)  

is, up to a constant factor, the weight function in group space after all variables except 
the wS have been integrated out. Then (see e.g. Freudenthal 1954) the Laplace- 
Beltrami operator acting on a class functionf becomes 

where 
A2f  = A,f = aS8,f-t 2a,fas 1nJ 

a 
a s =  a = -* 

8% 
t This is not surprising since SU(n) = A! is the unitary restriction of the largest group- 

$ Recall that we are using a special coordinate system. If this is relaxed g-ll4 is t o  be 
that of general linear transformations, SL(n; C). 

re placed by p- lI2. 
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A slight rearrangement yields 

1 1 S2f = - Zs2,(Jf) - f - ESZE,J 
J J 

M’e now note that J is an eigenfunction of z S Z s  with eigenvalue - 1 RI2, (Freudenthal 
1954, Berezin 1957-5 2.6), 

Zs2sJ = - I RI2J, 

i2 f = J-’as2,(Jf) + 1 R i2f. 

R = i& 2 a. (18) 

(19) 

+. 
Hence 

This agrees with Berezin’s expression for 8, with a particular value for his constant c, 
i.e. one chosen to make A,l vanish.? (See Berezin 1957-equation (2.22).) 

If we chooseg-1’4 for f in  equation (19) we see from (17) that we need the quantity 
asasIT+(a. a). This, however, vanishes because of (18) in th‘e limit of the root 
vectors becoming infinitesimally small. Thus we have that g - 1 ’ 4  is an eigenfunction 
of a,, 

Azg-l 4 = A2g-1,4 = IRi2g-14 

as required. This result ties in with our earlier development because the quantity Jx, 
x being the character, satisfies 

(cf. Freudenthal 1954-equation (8.1 1)). After dividing this equation by the dimen- 
sion of the representation it is to be compared with 

2”s(Jx) = - jK12(JX) 

2Sis(Jg-1,4) = 0. 

It is interesting to employ the operator A, at an earlier stage. The  quantity 
(q”, t”/q’, t ’ ) c  is, from expression (3), just a function of the complex distance between 
the two points q” and q’ in the group manifold. This follows from its invariance under 
left and right translations, which, in turn, can be obtained from the fact that left and 
right translations transform geodesics into geodesics. Thus we have 

I , I -1  (q” ,  t”lq’, t ‘ }  = K(q”, 4’) = K(q”q’-I, 1) = K(q’-’q”, 1) = K(1, q q ) 
= K(1, q’’-lq’) 

where the symbols q”, q’, 1 stand for the abstract group elements. Therefore also 

K(q”q’-’, 1) = K((q”q’-’(-l, 1) 

where stands for a general group element, and so K(q“, q’) depends on only the 
complex distance between the origin, 1, and the point q“q‘-’ which is the same as the 
complex distance between q” and 4‘. In  consequence we can, without loss of generality, 
discuss the propagator (q”, t”l1, t ’ )c  which, being a class function, satisfies the Schro- 
dinger equation (5) in the form 

E 
dt” 

i 7  {q” ,  t”l1, t ’ )c++(82’ ’-  lRI2) (q” ,  t”l1, t ’ )c  = 0 t” > t’ 

t See also Helgason (1964) where this and a number of other important results are derived. 



When  is the ‘sum oz’ev classical paths’ exact? 

or, in view of (19), 

”, t”l1, t’),++5”-’a””s’’(J” (q”,  t”l1, t ’ ) J  = 0. 
a 

i F  ( q  

This suggests that we introduce a new quantity (q“, t”Iq‘, t‘),” defined by 

( q “ ,  q q ’ ,  t ’ ) ;  = ,,,(,”, t”jq’, t’),J’ 
which satisfies 

459 

i.e. an ‘ordinary’ Schrodinger equation in the Cartan subspace or, as it is more 
technically known, the maximal torus. Perhaps this equation, more than any other, 
displays the fact that quantum mechanics, or any other Markovian process, on group 
space is not so different from that on ordinary flat space. The main distinction is that 
in group space the relative position of two points is described by I numbers, i.e. the 
complex distance between the points, where I is the rank of the group. 

For a rank I group there are I independent Laplace operators corresponding to the 
generalizations of the Casimir operator (Racah 1951) and the zonal functions are 
eigenfunctions of all of them. We have not found it necessary for present purposes to 
introduce these operators. 

Biedenharn (1963) has given a detailed discussion of these quantities and their 
eigenvalues can be found in Micu (1964) and Wenger (1967) for the case of S L ( n ) .  

There should be no difficulty in extending the calculation to the relativistic 
situation using, for example, a proper-time formulation or to the case of field theory, 
which latter would be especially interesting in view of its relevance for the chiral 
symmetry problem. 

4. Conclusions 
We have shown for a system which is essentially a free point moving in a space 

diffeomorphic to the group space of a compact simple group that the Feynman sum 
over all paths reduces to the sum over classical paths in so far as the finite time 
propagator is the same as the short time one except for the physically non-significant 
phase factor exp{ - (i/l2)Rt}.t This result also applies to the spaces dual to the above 
in the sense of Cartan (see, e.g. Hermann 1966) and also to direct products of the 
spaces. This latter corresponds to a trivial compounding of independent systems. 
Non-compact spaces are also allowed, at least mathematically, as are, of course, 
spaces of the flat Euclidean kind, for which the gi, can be made constant. There is the 
remaining question of what is the biggest class of spaces for which the result is true. 
It cannot be true for all symmetric spaces, for example, because it does not hold for 
the n-sphere, 

t This result had, in fact, already been conjectured for any Lie group by Schulman in his 
thesis (1 967-Princeton). 
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We were led to our result in an essentially synthetic way and the calculations 
were performed explicitly. It seems to us that we could have made more use of the 
general properties of spherical functions, for example the functional relation, 

which equation actually implies that the @ are given by (10). Also, granted at the 
outset that the space V ,  of the system were a group manifold, the quantization could, 
no doubt, have been treated in a more direct way using the so-called 'polar coordinates' 
(Berezin 1957-5 2.4), i.e. the ws and the remaining parameters, from the start. 

Finally, we have laid aside all topological considerations as forming a separate 
chapter. There is, however, just one point we should like to raise at this time. Accord- 
ing to Schulman (1968) if there is more than one homotopy class of classical paths, 
these enter in the Feynman sum with undetermined relative phase factors. Now, a 
similar situation occurs in the Aharonov-Bohm effect where a beam of electrons is 
made, essentially, to circulate an impenetrable solenoid. Some attempts were made 
to explain the effect on the basis that the impenetrable solenoid made space multiply- 
connected and hence one could alter the single-valuedness of the wavefunction. This 
approach was effectively dismissed by Aharonov and Bohm who simply turned on the 
solenoid barrier adiabatically. Such a process cannot affect single-valuedness. 

Perhaps a similar argument can be applied to the present situation. The fixed 
axis rigid rotator, a case discussed by Schulman, can be considered to be the limit of a 
circular potential well, and there is then only one homotopy class of classical paths. 
This is tantamount to saying that all geometrical constraints are due to forces which 
have been, or can be, switched on adiabatically. Whether this is a relevant viewpoint 
is open to discussion. 
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